Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
1.
Food Microbiol ; 121: 104508, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637072

RESUMO

Diarrheagenic E. coli (DEC) can cause severe diarrhea and is a public health concern worldwide. Cattle are an important reservoir for this group of pathogens, and once introduced into the abattoir environment, these microorganisms can contaminate consumer products. This study aimed to characterize the distribution of DEC [Shiga toxin-producing E. coli (STEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), and enteroaggregative E. coli (EAEC)] from extensive and intensive cattle production systems in Brazil. Samples (n = 919) were collected from animal feces (n = 200), carcasses (n = 600), meat cuts (n = 90), employee feces (n = 9), and slaughterhouse water (n = 20). Virulence genes were detected by PCR in 10% of animal samples (94/919), with STEC (n = 81) as the higher prevalence, followed by EIEC (n = 8), and lastly EPEC (n = 5). Animals raised in an extensive system had a higher prevalence of STEC (average 48%, sd = 2.04) when compared to animals raised in an intensive system (23%, sd = 1.95) (Chi-square test, P < 0.001). From these animals, most STEC isolates only harbored stx2 (58%), and 7% were STEC LEE-positive isolates that were further identified as O157:H7. This study provides further evidence that cattle are potential sources of DEC, especially STEC, and that potentially pathogenic E. coli isolates are widely distributed in feces and carcasses during the slaughter process.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Bovinos , Animais , Proteínas de Escherichia coli/genética , Brasil/epidemiologia , Sorotipagem , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Fezes
2.
Pan Afr Med J ; 47: 25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558553

RESUMO

Introduction: diarrheal infections in young children below five years and food animals are caused by diarrheagenic Escherichia coli strains. The study focused on understanding the association between DEC pathotypes in children below five years and food animals to establish the possibility of zoonotic transmission. Methods: samples from 150 children who presented with diarrhea at the Kisumu County Hospital and 100 stool samples from food animals were collected and processed using culture methods. Molecular identification of the pathotypes was assayed using a primer-specific polymerase chain reaction that targeted the six virulence genes related to the diarrheagenic Escherichia coli pathotypes. Results: one hundred and fifty-six study subjects (100 children samples and 56 food animals) samples were positive for E. coli polymerase chain reaction detection revealed a prevalence of (23%) among children below five years and a prevalence of (20%) among the food animals. Children samples showed Enteroaggregative Escherichia coli, having high phenotypic frequency of (12%) followed by Enterotoxigenic Escherichia coli, (5.3%) and Enteropathogenic Escherichia (3.3%) the least being mixed infections Enteroaggregative/Enterotoxigenic Escherichia coli and Enteroaggregative/Enteropathogenic Escherichia coli with (1.3%) respectively. The food animals found in children homesteads were detected to harbor pathogenic strains of E. coli. Enteropathogenic Escherichia coli was the most prevalent pathotypes detected in cattle (13%) followed by Enterotoxigenic Escherichia coli detected in goats at (4%) and poultry at (3%). Conclusion: presence of diarrheagenic Escherichia coli in food animals could serve as reservoirs of transmitting these bacteria to children below five years.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Criança , Humanos , Animais , Bovinos , Pré-Escolar , Prevalência , Quênia/epidemiologia , Infecções por Escherichia coli/diagnóstico , Escherichia coli Enteropatogênica/genética , Diarreia/epidemiologia , Diarreia/microbiologia
3.
Int J Food Microbiol ; 415: 110634, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38401379

RESUMO

Escherichia coli is one of the important reservoirs of antimicrobial resistance genes (ARG), which often causes food-borne diseases and clinical infections. Contamination with E. coli carrying clinically important antimicrobial resistance genes in retail meat products can be transmitted to humans through the food chain, posing a serious threat to public health. In this study, a total of 330 E. coli strains were isolated from 464 fresh meat samples from 17 food markets in China, two of which were identified as enterotoxigenic and enteropathogenic E. coli. Whole genome sequencing revealed the presence of 146 different sequence types (STs) including 20 new STs, and 315 different clones based on the phylogenetic analysis, indicating the high genetic diversity of E. coli from retail meat products. Antimicrobial resistance profiles showed that 82.42 % E. coli were multidrug-resistant strains. A total of 89 antimicrobial resistance genes were detected and 12 E. coli strains carried clinically important antimicrobial resistance genes blaNDM-1, blaNDM-5, mcr-1, mcr-10 and tet(X4), respectively. Nanopore sequencing revealed that these resistance genes are located on different plasmids with the ability of horizontal transfer, and their genetic structure and environment are closely related to plasmids isolated from humans. Importantly, we reported for the first time the presence of plasmid-mediated mcr-10 in E. coli from retail meat. This study revealed the high genetic diversity of food-borne E. coli in retail meat and emphasized their risk of spreading clinically important antimicrobial resistance genes.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética , Filogenia , beta-Lactamases/genética , Farmacorresistência Bacteriana/genética , Carne/análise , Escherichia coli Enteropatogênica/genética , Sequenciamento Completo do Genoma , Plasmídeos , Testes de Sensibilidade Microbiana
4.
Indian J Med Microbiol ; 47: 100535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38350526

RESUMO

PURPOSE: Diarrhoeal illness accounts for a high morbidity and mortality both in paediatric as well as adult groups and diarrhoeagenic Escherichia coli occupies a top position as a causative agent of infectious diarrhoeal illness worldwide. The aim of the current investigation was to determine the virulence and pattern of antibiotic resistance of enteropathogenic, enterotoxigenic, and shiga toxigenic Escherichia coli that are linked to diarrhoea in patients of both adult and paediatric age groups. METHODS: A total of 50 consecutive, nonduplicate Escherichia coli isolates were collected from patients with gastro-enteritis who were admitted to different clinical wards Silchar Medical College and Hospital, Silchar, India. PCR was used to identify the virulence genes of EPEC (eaeA and bfpA), STEC (stx1, stx2, and eae) and ETEC (eltA, eltB, estA1 and estA2) in the isolates of E. coli. The antibiotic susceptibility pattern of virulent E. coli isolates were checked using disc diffusion method. Molecular typing of the virulent E. coli detected in the study based on enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) was also done. RESULT: Out of 50 E. coli isolates, 13 (26%) were found to carry atleast one virulence gene. 11 isolates harboured eae gene and were characterized as EPEC and two isolates carried stx1 gene of STEC. These virulent isolates showed different antibiotic susceptibility pattern and harboured single or multiple antibiotic resistance genes. ERIC PCR established 12 different clonal patterns of the virulent study isolates of E. coli harbouring. CONCLUSION: EPEC pathotypes were found to be the most detected pathotype in the stool samples. Majority of the virulent isolates were also resistant to multiple antibiotics which is a serious public health concern and therefore requires a proper surveillance and studies to track their reservoirs to contain their spread.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Gastroenterite , Escherichia coli Shiga Toxigênica , Humanos , Criança , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Centros de Atenção Terciária , Diarreia/microbiologia , Escherichia coli Shiga Toxigênica/genética , Gastroenterite/epidemiologia , Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética
5.
Clin Lab ; 70(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38213202

RESUMO

BACKGROUND: Gastroenteritis refers to an infection in the stomach and small intestine that may be caused by bacteria, viruses, and other pathogenic agents. Most strains of Escherichia coli (E. coli) in the gastrointestinal system have shared a symbiotic relationship with humans, but some serotypes are pathogenic. This study aimed to identify E. coli pathotypes isolated from stool samples and determine the antibiotic resistance profiles of these pathotypes in the west of Iran. METHODS: The study was conducted on 106 samples of diarrheal feces which were sent to Imam Reza laboratory. First E. coli was detected and then the DNA was extracted. Next, the antibiotic sensitivity test was performed by the disk diffusion method. The E. coli pathotypes were qualitatively detected using the Amplisense Escherichioses-FRT PCR kit after DNA extraction from E. coli isolated in the stool sample. RESULTS: In this study, out of 106 E. coli-positive samples, pathogenic E. coli were detected in 62 samples including 5 samples (8.1%) which only contained the EPEC pathotype, 10 samples (16.1%) contained only the EAEC pathotype, and 12 samples (19.4%) had only the EHEC pathotype. ETEC and EIEC were not isolated from any of the samples. The sensitivity to Meropenem (97%) and Gentamicin (96.2%) showed the highest frequency among the samples. The highest level of resistance was related to Amoxicillin (93.4%) and Ampicillin (78%). CONCLUSIONS: The epidemiological results show that the predominant pathotype among all isolates is EHEC and most antibiotic resistances were related to Amoxicillin and Ampicillin. Finally, a comprehensive molecular diagnosis of E. coli pathotypes, investigation of their incidence, and antibiogram profiles will help to determine better diagnostic and therapeutic measures for managing diarrheal diseases.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Escherichia coli Enteropatogênica/genética , Irã (Geográfico)/epidemiologia , Farmacorresistência Bacteriana/genética , Diarreia/microbiologia , Ampicilina/uso terapêutico , Amoxicilina , DNA
6.
PLoS Pathog ; 19(12): e1011345, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060591

RESUMO

The quorum sensing two-component system (TCS) QseBC has been linked to virulence, motility and metabolism regulation in multiple Gram-negative pathogens, including Enterohaemorrhagic Escherichia coli (EHEC), Uropathogenic E. coli (UPEC) and Salmonella enterica. In EHEC, the sensor histidine kinase (HK) QseC detects the quorum sensing signalling molecule AI-3 and also acts as an adrenergic sensor binding host epinephrine and norepinephrine. Downstream changes in gene expression are mediated by phosphorylation of its cognate response regulator (RR) QseB, and 'cross-talks' with non-cognate regulators KdpE and QseF to activate motility and virulence. In UPEC, cross-talk between QseBC and TCS PmrAB is crucial in the regulation and phosphorylation of QseB RR that acts as a repressor of multiple pathways, including motility. Here, we investigated QseBC regulation of motility in the atypical Enteropathogenic E. coli (EPEC) strain O125ac:H6, causative agent of persistent diarrhoea in children, and its possible cross-talk with the KdpDE and PmrAB TCS. We showed that in EPEC QseB acts as a repressor of genes involved in motility, virulence and stress response, and in absence of QseC HK, QseB is likely activated by the non-cognate PmrB HK, similarly to UPEC. We show that in absence of QseC, phosphorylated QseB activates its own expression, and is responsible for the low motility phenotypes seen in a QseC deletion mutant. Furthermore, we showed that KdpD HK regulates motility in an independent manner to QseBC and through a third unidentified party different to its own response regulator KdpE. We showed that PmrAB has a role in iron adaptation independent to QseBC. Finally, we showed that QseB is the responsible for activation of colistin and polymyxin B resistance genes while PmrA RR acts by preventing QseB activation of these resistance genes.


Assuntos
Escherichia coli Enteropatogênica , Proteínas de Escherichia coli , Criança , Humanos , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Colistina , Transdução de Sinais , Fosforilação , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Ligação a DNA/metabolismo
7.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962953

RESUMO

AIM: This study aims to investigate the prevalence of intestinal pathogenic Escherichia coli (InPEC) in healthy pig-related samples and evaluate the potential virulence of the InPEC strains. METHODS AND RESULTS: A multiplex PCR method was established to identify different pathotypes of InPEC. A total of 800 rectal swab samples and 296 pork samples were collected from pig farms and slaughterhouses in Hubei province, China. From these samples, a total of 21 InPEC strains were isolated, including 19 enteropathogenic E. coli (EPEC) and 2 shiga toxin-producing E. coli (STEC) strains. By whole-genome sequencing and in silico typing, it was shown that the sequence types and serotypes were diverse among the strains. Antimicrobial susceptibility assays showed that 90.48% of the strains were multi-drug resistant. The virulence of the strains was first evaluated using the Galleria mellonella larvae model, which showed that most of the strains possessed medium to high pathogenicity. A moderately virulent EPEC isolate was further selected to characterize its pathogenicity using a mouse model, which suggested that it could cause significant diarrhea. Bioluminescence imaging (BLI) was then used to investigate the colonization dynamics of this EPEC isolate, which showed that the EPEC strain could colonize the mouse cecum for up to 5 days.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Virulência , Diarreia , Fatores de Virulência , Escherichia coli Shiga Toxigênica/genética
8.
Am J Trop Med Hyg ; 109(6): 1223-1232, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37903436

RESUMO

Diarrhea is a leading cause of childhood morbidity in Africa, but few studies, focus on bacterial diarrheal etiology including multicountry studies that typically excluded Nigeria. We collected stool specimens from 477 children under 5 years of age, 120 with diarrhea, who were enrolled in our prospective case-control study between November 2015 and August 2019. All were attending primary health clinics on the northern outskirts of Ibadan. Up to 10 Escherichia coli isolates were obtained per specimen, and at least three of them were sequenced using Illumina whole-genome sequence technology. Genomes were assembled using SPAdes and evaluated for quality using QUAST. VirulenceFinder was used to identify virulence genes. The microbiological quality of water from 14 wells within the study area was assessed using total and coliform counts. Diarrheagenic E. coli (DEC) were isolated from 79 (65.8%) cases and 217 (60.8%) control children. A number of hybrid DEC pathotypes, Salmonella spp., Yersinia spp., and all DEC pathotypes except Shiga toxin-producing E. coli were detected, but no pathogen showed association with disease (P > 0.05). Enterotoxigenic E. coli were more commonly recovered from children without diarrhea aged below 6 months but exclusively detected in children with diarrhea aged over 9 months. Temporally linked, genetically similar enteroaggregative E. coli were isolated from children in different households in eight instances. No well water sample drawn in the study was potable. Children in northern Ibadan were commonly colonized with DEC. Access to water, proper sanitation, and vaccination against the prevailing pathogens may be critical for protecting children from the less overt consequences of enteric pathogen carriage.


Assuntos
Escherichia coli Enteropatogênica , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Humanos , Estudos de Casos e Controles , Diarreia/epidemiologia , Diarreia/microbiologia , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Nigéria/epidemiologia , Fatores de Risco , Água
9.
Future Microbiol ; 18: 1353-1361, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37882814

RESUMO

Aim: To analyze ST131 clones and other characteristics in uropathogenic and atypical enteropathogenic Escherichia coli hybrids. Methods: Samples were collected from children with urinary tract infections and underwent testing for antimicrobial susceptibility, multidrug resistance and extended-spectrum ß-lactamases, in vitro biofilm formation and virulence, resistance genes, hybrid pathotypes and ST131 clones. Results: E. coli isolates showed high levels of antibiotic resistance, extended-spectrum ß-lactamase production, virulence genes, multidrug resistance and biofilm formation. Four (5.0%) isolates were identified as uropathogenic/atypical enteropathogenic E. coli hybrids, all of which belonged to the high-risk ST131 clone. Conclusion: Our results provide promising insights about hybrid isolates and should be addressed to improve prevention measures for hybrid pathotypes.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Criança , Virulência/genética , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/tratamento farmacológico , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética
10.
Open Vet J ; 13(9): 1106-1115, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37842101

RESUMO

Background: Small ruminants have a socioeconomic impact on Egypt's production of meat, milk, and wool. Hence, every effort should be taken to prevent infections. Aim: To elucidate the prevalence and serogrouping of Escherichia coli (E. coli) strains from diarrheic lambs and kids, determine their antibiotic susceptibility and associated risk factors affecting the occurrence of the disease, and establish the most common virulence genes marker and major antimicrobial resistance genes. Methods: A total of 150 diarrheic animals (95 lambs and 55 kids) at different ages and seasons were subjected to clinical examination. Rectal swabs were collected from 150 diarrheic animals for isolation and biochemical identification of E. coli. Results: The bacteriological examination revealed that 62/95 lambs and 26/55 kids with percentages of 65% and 47%, respectively, showed infection with E. coli. Serotyping of 88 isolates of E. coli revealed the strains belonging to O2(8), O55(17), O84(5), O17(4), O6(8), O91(17), O26(9), O103(5), O126(5), O124(6), and O159(4). A total of 21 isolates were examined by multiplex polymerase chain reaction assay for detection of virulence and resistance genes. All examined isolates possessed a combination between intimin gene and heat-stable toxin (100%), the serine protease (pic) gene on 8/21 isolates of O55, O2, O6 (38%), and α-hemolysin gene on 8/21 isolates of O26, O91(38%) while adherent invasive gene (invA) gene on 3/21 isolates of O124, O159 (14%) which divided diarrheagenic E. coli into four types assigned to be atypical enteropathogenic E. coli (48%), atypical enterohemorrhagic E. coli 35%), atypical enterotoxigenic E. coli (6%), and atypical enteroinvasive E. coli (11%). On the other hand, the results of antimicrobial susceptibility testing revealed high resistance to ampicillin, erythromycin, and tetracycline (100%) and amoxicillin/clavulanic acid (92%) but were highly sensitive to gentamicin, imipenem, norfloxacin, ciprofloxacin, chloramphenicol, and amikacin (100%). Concerning to ß lactams antibiotic resistance genes of examined isolates had blaSHV (100%) and blaCTX-M (43%). For tetracycline, we detected the tetA in all examined isolates. Conclusion: The wide spread of atypical E. coli strains among diarrheic lambs and kids with marked resistance to several antibiotics of interest and the detection of major resistance genes assess the potential risk of this pathogen to animal and public health.


Assuntos
Anti-Infecciosos , Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Doenças dos Ovinos , Animais , Ovinos , Antibacterianos/farmacologia , Virulência/genética , Sorogrupo , Prevalência , Egito/epidemiologia , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Escherichia coli Enteropatogênica/genética , Tetraciclina , Testes de Sensibilidade Microbiana/veterinária , Carneiro Doméstico , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/epidemiologia
11.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628911

RESUMO

Hybrid strains Escherichia coli acquires genetic characteristics from multiple pathotypes and is speculated to be more virulent; however, understanding their pathogenicity is elusive. Here, we performed genome-based characterization of the hybrid of enteropathogenic (EPEC) and enterotoxigenic E. coli (ETEC), the strains that cause diarrhea and mortality in children. The virulence genes in the strains isolated from different sources in the South Korea were identified, and their phylogenetic positions were analyzed. The EPEC/ETEC hybrid strains harbored eae and est encoding E. coli attaching and effacing lesions and heat-stable enterotoxins of EPEC and ETEC, respectively. Genome-wide phylogeny revealed that all hybrids (n = 6) were closely related to EPEC strains, implying the potential acquisition of ETEC virulence genes during ETEC/EPEC hybrid emergence. The hybrids represented diverse serotypes (O153:H19 (n = 3), O49:H10 (n = 2), and O71:H19 (n = 1)) and sequence types (ST546, n = 4; ST785, n = 2). Furthermore, heat-stable toxin-encoding plasmids possessing estA and various other virulence genes and transporters, including nleH2, hlyA, hlyB, hlyC, hlyD, espC, espP, phage endopeptidase Rz, and phage holin, were identified. These findings provide insights into understanding the pathogenicity of EPEC/ETEC hybrid strains and may aid in comparative studies, virulence characterization, and understanding evolutionary biology.


Assuntos
Escherichia coli Enteropatogênica , Escherichia coli Enterotoxigênica , Criança , Humanos , Escherichia coli Enterotoxigênica/genética , Fatores de Virulência/genética , Escherichia coli Enteropatogênica/genética , Filogenia , Genômica , República da Coreia
12.
Sci Total Environ ; 902: 166336, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591385

RESUMO

Enteropathogenic Escherichia coli (EPEC) is an important cause of diarrhoeal disease in human infants. EPEC strains are defined by the presence of specific virulence factors including intimin (encoded by the eae gene) and bundle forming pili (Bfp). Bfp is encoded by the bfp operon and includes the bfpA gene for the major pilus subunit. By definition, Bfp are only present in typical EPEC (tEPEC), for which, humans are considered to be the only known natural host. This study detected tEPEC in faecal samples from a wild Australian fruit bat species, the grey-headed flying-fox (Pteropus poliocephalus). Whole genome sequencing of 61 E. coli isolates from flying-foxes revealed that 21.3 % (95%CI: 13 %-33 %) were tEPEC. Phylogenetic analyses showed flying-fox tEPEC shared evolutionary lineages with human EPEC, but were predominantly novel sequence types (9 of 13) and typically harboured novel bfpA variants (11 of 13). HEp-2 cell adhesion assays showed adherence to human-derived epithelial cells by all 13 flying-fox tEPEC, indicating that they all carried functional Bfp. Using an EPEC-specific duplex PCR, it was determined that tEPEC comprised 17.4 % (95%CI: 13 %-22 %) of 270 flying-fox E. coli isolates. Furthermore, a tEPEC-specific multiplex PCR detected the eae and bfpA virulence genes in 18.0 % (95%CI: 8.0 %-33.7 %) of 506 flying-fox faecal DNA samples, with occurrences ranging from 1.3 % to 87.0 % across five geographic areas sampled over a four-year period. The identification of six novel tEPEC sequence types and five novel bfpA variants suggests flying-foxes carry bat-specific tEPEC lineages. However, their close relationship with human EPEC and functional Bfp, indicates that flying-fox tEPEC have zoonotic potential and that dissemination of flying-fox tEPEC into urban environments may pose a public health risk. The consistent detection of tEPEC in flying-foxes over extensive geographical and temporal scales indicates that both wild grey-headed flying-foxes and humans should be regarded as natural tEPEC hosts.


Assuntos
Quirópteros , Escherichia coli Enteropatogênica , Proteínas de Escherichia coli , Lactente , Animais , Humanos , Escherichia coli Enteropatogênica/genética , Adesinas Bacterianas/genética , Filogenia , Proteínas de Escherichia coli/genética , Austrália
13.
Am J Trop Med Hyg ; 109(3): 559-567, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37549901

RESUMO

Diarrheal diseases are a leading cause of mortality and morbidity in low- and middle-income countries. Diarrhea is associated with a wide array of etiological agents including bacterial, viral, and parasitic enteropathogens. Previous studies have captured between- but not within-country heterogeneities in enteropathogen prevalence and severity. We conducted a case-control study of diarrhea to understand how rates and outcomes of infection with diarrheagenic pathotypes of Escherichia coli vary across an urban-rural gradient in four sites in Ecuador. We found variability by site in enteropathogen prevalence and infection outcomes. Any pathogenic E. coli infection, coinfections, diffuse adherent E. coli (DAEC), enteroinvasive E. coli (EIEC), and rotavirus were significantly associated with acute diarrhea. DAEC was the most common pathotype overall and was more frequently associated with disease in urban areas. Enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC) were more common in rural areas. ETEC was only associated with diarrhea in one site. Phylogenetic analysis revealed that associations with disease were not driven by any single clonal complex. Higher levels of antibiotic resistance were detected in rural areas. Enteropathogen prevalence, virulence, and antibiotic resistance patterns vary substantially by site within Ecuador. The variations in E. coli pathotype prevalence and virulence in this study have important implications for control strategies by context and demonstrate the importance of capturing within-country differences in enteropathogen disease dynamics.


Assuntos
Escherichia coli Enteropatogênica , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Humanos , Infecções por Escherichia coli/microbiologia , Estudos de Casos e Controles , Equador/epidemiologia , Filogenia , Escherichia coli Enteropatogênica/genética , Diarreia/microbiologia , Escherichia coli Enterotoxigênica/genética , Fezes/microbiologia
14.
PLoS One ; 18(7): e0288517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450423

RESUMO

BACKGROUND: Diarrhea is a serious health problem in children, with the highest mortality rate in sub-Saharan Africa. Diarrheagenic Escherichia coli (DEC) is among the major bacterial causes of diarrhea in children under age five. The present study aims to determine molecular epidemiology and antimicrobial resistance profiles of DEC and identify contributing factors for acquisition among children under age five in Central Ethiopia. METHODS: A health facility-centered cross-sectional study was conducted in Addis Ababa and Debre Berhan, Ethiopia, from December 2020 to August 2021. A total of 476 specimens, 391 from diarrheic and 85 from non-diarrheic children under age five were collected. Bacterial isolation and identification, antimicrobial susceptibility, and pathotype determination using polymerase chain reaction (PCR) were done. RESULTS: Of the 476 specimens analyzed, 89.9% (428/476) were positive for E. coli, of which 183 were positive for one or more genes coding DEC pathotypes. The overall prevalence of the DEC pathotype was 38.2% (183/476). The predominant DEC pathotype was enteroaggregative E. coli (EAEC) (41.5%, 76/183), followed by enterotoxigenic E. coli (21.3%, 39/183), enteropathogenic E. coli (15.3%, 28/183), enteroinvasive E. coli (12.6%, 23/183), hybrid strains (7.1%, 13/183), Shiga toxin-producing E. coli (1.6%, 3/183), and diffusely-adherent E. coli (0.6%, 1/183). DEC was detected in 40.7% (159/391) of diarrheic and 28.2% (24/85) in non-diarrheic children (p = 0.020). The majority of the DEC pathotypes were resistant to ampicillin (95.1%, 174/183) and tetracycline (91.3%, 167/183). A higher rate of resistance to trimethoprim-sulfamethoxazole (58%, 44/76), ciprofloxacin (22%, 17/76), ceftazidime and cefotaxime (20%, 15/76) was seen among EAEC pathotypes. Multidrug resistance (MDR) was detected in 43.2% (79/183) of the pathotypes, whereas extended spectrum ß-lactamase and carbapenemase producers were 16.4% (30/183) and 2.2% (4/183), respectively. CONCLUSION: All six common DEC pathotypes that have the potential to cause severe diarrheal outbreaks were found in children in the study area; the dominant one being EAEC with a high rate of MDR.


Assuntos
Escherichia coli Enteropatogênica , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Humanos , Criança , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Etiópia/epidemiologia , Epidemiologia Molecular , Estudos Transversais , Diarreia/microbiologia , Escherichia coli Enteropatogênica/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
15.
Sci Rep ; 13(1): 6802, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37185286

RESUMO

Stunted growth is an emerging global challenge affecting children under the age of 5 years in low- and middle-income countries. Despite such a high global prevalence of stunting, the mechanism of pathogenesis and the role of associated gut microbiota is poorly understood. The present study was designed to investigate the association of pathogenic strains of E. coli with the residential gut microbiota of stunted growth children. A total of 64 stool sample were collected from children aged ≤ 5 years, and were processed for isolation and molecular characterization of diarrheagenic E. coli. Selected stool samples (n = 39 including three normal controls) were then analysed for microbial community profiling using 16S ribosomal RNA (rRNA) gene sequencing. Furthermore, associations between changes in the microbiota in the presence of different E. coli strains was explored. Pathotyping of the isolated E. coli (n = 64) has shown that 39.68% belonged to one of the five pathotypes of E. coli whilst the remaining ones were non-typeable. Amongst the different pathotypes, EPEC was found to be the most prevalent (52%; n = 13), followed by EAEC (20%; n = 5), EIEC (12%; n = 3), EHEC (8%; n = 2) and ETEC 2 (8%; n = 2). Phylogrouping analysis has shown that majority of the strains belonged to B2 (28.12%). Microbial diversity is shown to be significant and varied when the samples are organized under the recovered phylogroups. Moreover, based on predictive metabolism, the colonization of these strains were found to be significantly associated with energy utilization pathways such as Denovoprine-2 and glyoxylate-by. Differential analysis has shown that Escherichia-Shigella and Enterococcus were altered for the children with stunted growth.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Microbioma Gastrointestinal , Criança , Humanos , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Estudos Prospectivos , Microbioma Gastrointestinal/genética , Diarreia/epidemiologia , Escherichia coli Enteropatogênica/genética
16.
Clin Infect Dis ; 76(76 Suppl1): S77-S86, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37074433

RESUMO

BACKGROUND: To address knowledge gaps regarding diarrheagenic Escherichia coli (DEC) in Africa, we assessed the clinical and epidemiological features of enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), and Shiga toxin-producing E. coli (STEC) positive children with moderate-to-severe diarrhea (MSD) in Mali, The Gambia, and Kenya. METHODS: Between May 2015 and July 2018, children aged 0-59 months with medically attended MSD and matched controls without diarrhea were enrolled. Stools were tested conventionally using culture and multiplex polymerase chain reaction (PCR), and by quantitative PCR (qPCR). We assessed DEC detection by site, age, clinical characteristics, and enteric coinfection. RESULTS: Among 4840 children with MSD and 6213 matched controls enrolled, 4836 cases and 1 control per case were tested using qPCR. Of the DEC detected with TAC, 61.1% were EAEC, 25.3% atypical EPEC (aEPEC), 22.4% typical EPEC (tEPEC), and 7.2% STEC. Detection was higher in controls than in MSD cases for EAEC (63.9% vs 58.3%, P < .01), aEPEC (27.3% vs 23.3%, P < .01), and STEC (9.3% vs 5.1%, P < .01). EAEC and tEPEC were more frequent in children aged <23 months, aEPEC was similar across age strata, and STEC increased with age. No association between nutritional status at follow-up and DEC pathotypes was found. DEC coinfection with Shigella/enteroinvasive E. coli was more common among cases (P < .01). CONCLUSIONS: No significant association was detected between EAEC, tEPEC, aEPEC, or STEC and MSD using either conventional assay or TAC. Genomic analysis may provide a better definition of the virulence factors associated with diarrheal disease.


Assuntos
Coinfecção , Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Escherichia coli Shiga Toxigênica , Criança , Humanos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/diagnóstico , Escherichia coli Shiga Toxigênica/genética , Coinfecção/epidemiologia , Diarreia/epidemiologia , Diarreia/diagnóstico , Escherichia coli Enteropatogênica/genética , Quênia
17.
PLoS Negl Trop Dis ; 17(4): e0011259, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014918

RESUMO

BACKGROUND: Diarrheagenic Escherichia coli (DEC) is a group of bacterial pathogens that causes life-threatening diarrhea in children in developing countries. However, there is limited information on the characteristics of DEC isolated from patients in these countries. A detailed genomic analysis of 61 DEC-like isolates from infants with diarrhea was performed to clarify and share the characteristics of DEC prevalent in Vietnam. PRINCIPAL FINDINGS: DEC was classified into 57 strains, including 33 enteroaggregative E. coli (EAEC) (54.1%), 20 enteropathogenic E. coli (EPEC) (32.8%), two enteroinvasive E. coli (EIEC) (3.3%), one enterotoxigenic E. coli (ETEC), and one ETEC/EIEC hybrid (1.6% each), and surprisingly into four Escherichia albertii strains (6.6%). Furthermore, several epidemic DEC clones showed an uncommon combination of pathotypes and serotypes, such as EAEC Og130:Hg27, EAEC OgGp9:Hg18, EAEC OgX13:H27, EPEC OgGp7:Hg16, and E. albertii EAOg1:HgUT. Genomic analysis also revealed the presence of various genes and mutations associated with antibiotic resistance in many isolates. Strains that demonstrate potential resistance to ciprofloxacin and ceftriaxone, drugs recommended for treating childhood diarrhea, accounted for 65.6% and 41%, respectively. SIGNIFICANCE: Our finding indicate that the routine use of these antibiotics has selected resistant DECs, resulting in a situation where these drugs do not provide in therapeutic effects for some patients. Bridging this gap requires continuous investigations and information sharing regarding the type and distribution of endemic DEC and E. albertii and their antibiotic resistance in different countries.


Assuntos
Escherichia coli Enteropatogênica , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Criança , Humanos , Lactente , Infecções por Escherichia coli/microbiologia , Vietnã/epidemiologia , Diarreia/epidemiologia , Diarreia/microbiologia , Escherichia coli Enteropatogênica/genética , Escherichia coli Enterotoxigênica/genética , Genômica
18.
Gut Microbes ; 15(1): 2190308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949030

RESUMO

Pathogenic subsets of Escherichia coli include diarrheagenic (DEC) strains that cause disease within the gut and extraintestinal pathogenic E. coli (ExPEC) strains that are linked with urinary tract infections, bacteremia, and other infections outside of intestinal tract. Among DEC strains is an emergent pathotype known as atypical enteropathogenic E. coli (aEPEC), which can cause severe diarrhea. Recent sequencing efforts revealed that some E. coli strains possess genetic features that are characteristic of both DEC and ExPEC isolates. BA1250 is a newly reclassified hybrid strain with characteristics of aEPEC and ExPEC. This strain was isolated from a child with diarrhea, but its genetic features indicate that it might have the capacity to cause disease at extraintestinal sites. The spectrum of adhesins encoded by hybrid strains like BA1250 are expected to be especially important in facilitating colonization of diverse niches. E. coli common pilus (ECP) is an adhesin expressed by many E. coli pathogens, but how it impacts hybrid strains has not been ascertained. Here, using zebrafish larvae as surrogate hosts to model both gut colonization and extraintestinal infections, we found that ECP can act as a multi-niche colonization and virulence factor for BA1250. Furthermore, our results indicate that ECP-related changes in activation of envelope stress response pathways may alter the fitness of BA1250. Using an in silico approach, we also delineated the broader repertoire of adhesins that are encoded by BA1250, and provide evidence that the expression of at least a few of these varies in the absence of functional ECP.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Microbioma Gastrointestinal , Animais , Escherichia coli Enteropatogênica/genética , Escherichia coli Extraintestinal Patogênica/genética , Fímbrias Bacterianas/genética , Virulência/genética , Peixe-Zebra , Fatores de Virulência/genética , Diarreia , Adesinas Bacterianas/genética
19.
Front Cell Infect Microbiol ; 13: 1103552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36864885

RESUMO

Introduction: Enteropathogenic Escherichia coli (EPEC) is a diarrheagenic pathogen and one of the major causes of gastrointestinal illness in developing countries. EPEC, similar to many other Gram-negative bacterial pathogens, possesses essential virulence machinery called the type III secretion system (T3SS) that enables the injection of effector proteins from the bacteria into the host cytoplasm. Of these, the translocated intimin receptor (Tir) is the first effector to be injected, and its activity is essential for the formation of attaching and effacing lesions, the hallmark of EPEC colonization. Tir belongs to a unique group of transmembrane domain (TMD)-containing secreted proteins, which have two conflicting destination indications, one for bacterial membrane integration and another for protein secretion. In this study, we examined whether TMDs participate in the secretion, translocation, and function of Tir in host cells. Methods: We created Tir TMD variants with the original or alternative TMD sequence. Results: We found that the C-terminal TMD of Tir (TMD2) is critical for the ability of Tir to escape integration into the bacterial membrane. However, the TMD sequence was not by itself sufficient and its effect was context-dependent. Moreover, the N-terminal TMD of Tir (TMD1) was important for the postsecretion function of Tir at the host cell. Discussion: Taken together, our study further supports the hypothesis that the TMD sequences of translocated proteins encode information crucial for protein secretion and their postsecretion function.


Assuntos
Escherichia coli Enteropatogênica , Proteínas de Escherichia coli , Sistemas de Secreção Tipo III , Citoplasma , Transporte Proteico , Secreções Corporais , Escherichia coli Enteropatogênica/genética , Receptores de Superfície Celular , Proteínas de Escherichia coli/genética
20.
J Med Microbiol ; 72(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36753429

RESUMO

Introduction. The main aetiological agent of urinary tract infection (UTI) is Escherichia coli, categorized as uropathogenic E. coli (UPEC). The genome of UPEC shows a high degree of plasticity, which leads to the emergence of 'intermediary strains' with different traits from the parental pathotypes.Gap Statement/Aim. We aimed to assess the frequency and types of the hybrid UPEC among isolates causing UTI and characterize virulence properties of these hybrid isolates molecularly and phenotypically.Methodology. After detection of intestinal pathogenic E. coli (IPEC) virulence markers among 200 UPEC isolates, they were assessed for the presence of 40 virulence genes (VGs) of extraintestinal, uropathogenic and diarrhoeagenic E. coli, phylogenetic group typing, phenotypic traits including biofilm formation, adherence and invasion to HeLa cells, haemolysis activity and antimicrobial resistance.Results. The analysis showed 21 (10.5 %) UPEC isolates carried enteroaggregative E. coli (EAEC) and enteropathogenic E. coli (EPEC) virulence markers. Twenty isolates carried the aggR (EAEC) and one the eae and escV genes (EPEC), which were classified as hybrid strains. The most commonly identified genes were fimH (71.5 %), fyuA (66.7 %), iutA (62 %), chuA (57.1) and traT (47.6 %). Biofilm production, adhesion and invasion were found among 17 (81), 18 (85.7) and 11 (52.4 %) hybrids, respectively. Investigation of the genetic characteristics, phylogenetic group and virulence profile of the detected hybrids revealed that they have genetic diversity and do not belong to a particular clonal lineage.Conclusion. The present study reveals that some UPEC may carry virulence markers of IPEC pathotypes. EAEC and EPEC seem to have a greater tendency to form hybrids and cause UTI. Further studies are needed to elucidate what factors contributed to survival in the urinary tract system and facilitate infection and whether these combinations lead to an increase in pathogenicity or not.


Assuntos
Infecções Comunitárias Adquiridas , Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Infecções Urinárias , Sistema Urinário , Escherichia coli Uropatogênica , Humanos , Escherichia coli Uropatogênica/genética , Infecções por Escherichia coli/diagnóstico , Células HeLa , Filogenia , Fatores de Virulência/genética , Infecções Urinárias/diagnóstico , Escherichia coli Enteropatogênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...